home *** CD-ROM | disk | FTP | other *** search
/ Hyper Stacks 1994 May / Hyper Stacks (Pacific HiTech)(1994)[Mac].iso / Education / Veterinary Curriculum / card_16668.txt < prev    next >
Encoding:
Text File  |  1988-05-17  |  10.8 KB  |  306 lines

  1. -- card: 16668 from stack: in
  2. -- bmap block id: 0
  3. -- flags: 0000
  4. -- background id: 3930
  5. -- name: 
  6.  
  7.  
  8. -- part contents for background part 10
  9. ----- text -----
  10. VP 350 - Veterinary Epidemiology
  11. Second Year - First Semester
  12. R.D. Smith, R.M. Weigel, L.L. Hungerford (1987)
  13.  
  14.  
  15. -- part contents for background part 4
  16. ----- text -----
  17.  
  18. Introduction.
  19.      Definitions.
  20.      Epidemiologic approaches.
  21.         Descriptive epidemiology.
  22.         Ecological epidemiology.
  23.         Etiological epidemiology.
  24.         Herd health/ preventive medicine.
  25.         Clinical epidemiology.
  26.      Applications of epidemiology in veterinary practice.
  27.         Medical decision-making.
  28.         Clinical research.
  29.         Medical controversy.
  30.      Course objectives.
  31.         Development of medical decision-making skills.
  32.         Epidemiologic methodology and the use of statistical and
  33.           graphics packages.
  34.         Learn to critically review and extract useful information 
  35.           from the medical literature.
  36.  
  37. Abnormality.
  38.      Introduction.
  39.      Properties of clinical measurements.
  40.         Signs versus symptoms.
  41.         Scales: nominal, ordinal, interval.
  42.         Clinical staging.
  43.         Validity and reliability.
  44.         Variation : measurement variation and biologic variation.
  45.      Distributions.
  46.          Basic properties of distributions: central tendency, 
  47.            dispersion.
  48.          Naturally-occurring distributions.
  49.          The normal distribution.
  50.      Reference ranges and the criteria for abnormality.
  51.          Abnormal as unusual.
  52.          Abnormal as associated with disease.
  53.          Abnormal as treatable.
  54.      Regression to the mean.
  55.  
  56. Diagnostic Test.
  57.      Introduction.
  58.      The accuracy of a test result.
  59.           The standard of validity ("Gold standard").
  60.           Post-mortem examination as a diagnostic test.
  61.      Properties of diagnostic tests.
  62.           Sensitivity and specificity.
  63.           Trade-offs between  sensitivity and specificity .
  64.           Predictive value.
  65.           Accuracy, concordance and reproducibility.
  66.      Sources of bias in the evaluation of diagnostic tests.
  67.           Improper standards of validity - relative versus absolute
  68.             sensitivity and specificity.
  69.           The spectrum of patients.
  70.           Bias in association with the test result and disease.
  71.      Statistical significance.
  72.  
  73. Diagnostic Strategy.
  74.      Introduction.
  75.      Increasing the predictive value of diagnostic tests.
  76.      Multiple tests.
  77.           Parallel testing.
  78.           Serial testing.
  79.           Repeat testing.
  80.           Assumption of independance of multiple test results.
  81.      Working with differential lists.
  82.           Rule-ins and rule-outs: the choice of sensitive or specific 
  83.             tests.
  84.           Integration of differential lists and probablistic reporting.    
  85.      Screening for disease.
  86.            Definitions: case-finding, mass screening.
  87.            Periodic health examination.
  88.            Test criteria.
  89.  
  90. Frequency.
  91.      Introduction.
  92.      Structure of measures of clinical frequency.
  93.            Rates and ratios.
  94.            Commonly used vital statistics and morbidity rates.
  95.            Prevalence, incidence and attack rates.
  96.      Measuring prevalence and incidence.
  97.            Measuring prevalence.
  98.            Measuring incidence.
  99.      Sources of bias in prevalence studies.
  100.            Interpreting temporal sequences.
  101.            Old versus new cases.
  102.            Real versus apparent prevalence.
  103.            Relationship between incidence, prevalence, and duration 
  104.              of disease.
  105.      Interpreting measures of clinical frequency.
  106.            What is a "case"? - defining the numerator.
  107.            What is the population? - defining the denominator.
  108.            Appropriate denominators for comparison of rates.
  109.      The uses of incidence and prevalence.
  110.            Predicting the future.
  111.            The probability that a patient has the outcome.
  112.            Making comparisons.
  113.  
  114. Risk and Risk Prevention.
  115.       Risk factors.
  116.       Factors which interfere with the asessment of risk.
  117.            Long latency.
  118.            Frequent exposure to risk factor.
  119.            Low incidence of disease.
  120.            Small risk.
  121.            Common disease.
  122.            Multiple causes.
  123.       Uses of risk.
  124.            Prediction.
  125.            Diagnosis.
  126.            Cause.
  127.            Prevention.
  128.       Studies of risk.
  129.            Observational versus experimental studies.
  130.            Cohorts.
  131.            Cohort studies: concurrent cohort studies, historical 
  132.              cohort studies, advantages and disadvantages of the two 
  133.              approaches.
  134.            Survival studies.
  135.            Limitations of cohort studies.
  136.       Comparing risks.
  137.            Relative risk.
  138.            Attributable risk.
  139.            Population attributable risk.
  140.            Population attributable fraction.
  141.  
  142. Prognosis.
  143.        Outcomes of disease.
  144.        Probability and the individual.
  145.        Difference between risk and prognosis.
  146.            Differences in rates.
  147.            Nature of events.
  148.            Diferences in factors.
  149.       Natural history/clinical course.
  150.            Natural history.
  151.            Clinical course.
  152.            Sampling bias.
  153.       Prognosis as a rate.
  154.            Assumptions.
  155.            A trade-off: simplicity versus loss of information.
  156.        Survival analysis.
  157.            Survival of a cohort: steady-state population models,
  158.              vital statistics data, clinical trials.
  159.            Life table analysis.
  160.            Interpreting survival curves.
  161.        Communication of prognosis.
  162.        Bias in cohort studies.
  163.            Assembly bias.
  164.            Migration bias.
  165.            Measurement bias.
  166.        Controlling for bias.
  167.  
  168. Treatment.
  169.        Ideas and evidence.
  170.        Efficacy, effectiveness and compliance.
  171.        Clinical trials - structure and evaluation.
  172.            Uncontrolled trials.
  173.            Comparisons across time and place - time, place.
  174.            Allocating treatment - non-random allocation, random 
  175.              allocation, stratified randomization.
  176.            Remaining in assigned treatment groups - explanatory 
  177.              trial, management trial.
  178.            Assessment of outcome - blinding patients, blinding 
  179.              investigators, placebo effects. 
  180.            Statistical analysis.
  181.        Case studies.
  182.        Subgroups.
  183.        The real world.
  184.  
  185. Chance.
  186.        Introduction.
  187.        Statistical tests.
  188.            Concluding a difference exists - the null hypothesis, 
  189.              statistical significance, confidence intervals, 
  190.              one-tailed versus two-tailed tests.
  191.            Concluding a difference does not exist.
  192.            Concuding an association exists.
  193.        Chosing an appropriate statistical test.
  194.            Discrete versus continuous data.
  195.            Paired versus unpaired data.
  196.            Independent versus dependent (repeated) measures.
  197.            Covariance.
  198.       How many subjects are enough?
  199.            Minimum sample size for demonstrating an extreme 
  200.              outcome. 
  201.            Minimum sample size for estimating a rate with a 
  202.              specified degree of precision.
  203.            Minimum sample size to detect differences among groups
  204.              in studies of risk, prognosis and treatment.
  205.       Multiple comparisons.
  206.  
  207. Case Control.
  208.       Introduction.
  209.       The case report.
  210.       The case series.
  211.       The case control study.
  212.             Advantages of case control studies.
  213.             Cohort versus case control - A cohort study of the risk 
  214.               of IBK following vaccination against IBR; A case 
  215.               control study of the risk of IBK following vaccination 
  216.               against IBR.
  217.             Case control versus prevalence survey.
  218.             The odds ratio.
  219.       Bias in case control studies.
  220.             Bias in selecting groups.
  221.             Bias in measuring exposure.
  222.             Preumed temporal relationships.
  223.  
  224. Outbreak Investigation.
  225.       Introduction.
  226.       Issues in the epidemiology of a disease.
  227.       Outbreak investigation. Components of an epidemiologic 
  228.        workup.
  229.              Descriptive phase.
  230.              Analytical phase.
  231.              Intervention.
  232.  
  233. Occurrence.
  234.        Introduction.
  235.        Case definition.
  236.              Based on disesae signs, symptoms, and epidemiology.
  237.              Based on performance.
  238.         Reporting disese occurrence.
  239.              Host distribution.
  240.              Temporal distribution.
  241.              Spatial distribution.
  242.        Case studies.
  243.              Characteristics of veterinarians in Illinois  
  244.                 (Schnurrenberger et al, 1972).
  245.              Brucella infections in Illinois Veterinarians 
  246.                 (Schnurrenberger et al, 1975).
  247.              Urban cats: characteristics and estimation of mortality
  248.                 due to motor vehicles (Childs and Ross, 1986).
  249.  
  250. Cause.
  251.        Introduction.
  252.        Multiple causation of disease - agent, host, and 
  253.          environmental triad.
  254.               Agents factors.
  255.               Host factors - susceptibility.
  256.               Environmental (management) factors.
  257.        Multiple causation and Koch's postulates.
  258.        Establishing cause.
  259.               Strength of study designs.
  260.               Temporal relationship between cause and effect.
  261.               Strength of association.
  262.               Dose-response relationship.
  263.               Biologic plausibility.
  264.               Consistency.
  265.               Elimination of other possibilities (rule-out).
  266.               Reversible associations.
  267.        Case study.
  268.               Risk factors for salmonellosis in hospitalized horses
  269.                 (Hird et al, 1986).
  270.  
  271. Source and Transmission of Disease Agents.
  272.        Sources of infection.
  273.               Iatrogenic.
  274.               Animal reserviors: human, vertebrate animal, 
  275.                 invertebrate animal, amplifying hosts.
  276.               Environment.
  277.        Transmission.
  278.               Transmissible versus non-transmissible diseases.
  279.               Mode of transmission versus route of infection.
  280.        Modes of transmission of communicable diseases.
  281.               Horizontal transmission.
  282.               Vertical transmission.
  283.        Factors affecting communicability.
  284.               Agent factors.
  285.               Host factors.
  286.               Environmental factors.
  287.        Case studies.
  288.               Trichinosis in a herd of swine: cannabalism as a major 
  289.                 mode of transmission (Hanbury et al, 1986).
  290.               Epidemiologic findings on a swine farm with enzootic 
  291.                 toxoplasmosis (Dubey et al, 1986).
  292.  
  293. The Cost of Disease.
  294.        Cost of disease.
  295.               Application of the "Measures of Effect" approach to 
  296.                 economic analysis.
  297.        Strategies to reduce the frequency of disease.
  298.               Disease prevention.
  299.               Disease control.
  300.               Disease eradication.
  301.        Case study.
  302.               Economic assessment of a pseudorabies epizootic, 
  303.                 breeding herd removal/repopulation, and downtime in 
  304.                 a commercial swine herd (Hoblet et al, 1987).
  305.  
  306.